Philadelphia University Faculty of Science Department of Basic Sciences and Mathematics Real Analysis Second Exam

Student name: _____

Number:_____

1) State Monotone Convergent Theorem

2) Determine whether the following sequences converge or diverge

a)
$$(\frac{3 + \cos n}{n^2})$$
.
b) $(\cos(n\frac{\pi}{2}))$

c)
$$\left(\frac{n3^n}{2^{2n+1}}\right)$$

3) Prove that every convergent sequence is Cauchy sequence.

4) Prove that a bounded sequence of real numbers has a convergent subsequence.

5) Let $x_1 > 1$ and $x_{n+1} = 2 - \frac{1}{x_n}$ for $n \in \mathbb{N}$. Show that (x_n) is decreasing, bounded below by 1, then find the limit. (Hint: let $x_1 = 2$)

- 6) Determine whether the following statements are true or false, justify
 - a) Every convergent sequence is monotone
 - b) If (x_n) , (y_n) are divergent sequences, then $(x_n + y_n)$ is divergent
 - c) If $\lim_{n\to\infty} |x_{n+1} x_n| = 0$, then (x_n) converge